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Abstract. Leaf area index (LAI) is a key parameter in most land surface models. Models that
operate at multiple spatial scales may require consistent LAI inputs at different spatial resolu-
tions or from different sensors. For example, the atmosphere-land exchange inverse model and
associated disaggregation algorithm (DisALEXI) use the moderate resolution imaging spectro-
radiometer (MODIS) LAI product to model fluxes at regional scales (1- to 10-km grid resolu-
tion), and Landsat-based LAI to disaggregate to field scale (30-m grid). In order to make a
MODIS-consistent LAI product from Landsat imagery for this combined scheme, a simple refer-
ence-based regression tree approach was developed. This approach uses homogeneous and high-
quality LAI retrievals from MODIS as references to develop a regression tree relating these
MODIS LAI samples to Landsat surface reflectances. Results show that the approach can pro-
duce accurate estimates of LAI from Landsat, as evaluated using field measurements collected
during the soil moisture experiment of 2002, conducted in central Iowa during a period of rapid
vegetation growth. The coefficient of determination (r2) computed between Landsat retrievals
and field measurements was 0.94 at the field scale, with an overall mean bias error (MBE) of
−0.07 and mean absolute difference (MAD) of 0.23. MAD values of 0.17 and 0.32 were
obtained for low to moderate LAI (0–3) and high LAI (>3), respectively, with some underes-
timation for the high LAI (MBE ¼ −0.28). The LAI maps retrieved from Landsat were con-
sistent with the MODIS estimates when aggregated to coarser scales. MAD computed between
Landsat- and MODIS-derived LAI ranged from 0.07 to 0.83 for different Landsat dates, with no
significant bias compared to MODIS high-quality retrievals. This approach demonstrates a sim-
ple framework for producing MODIS-consistent LAI from Landsat data for modeling the land
surface at different spatial scales. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).
[DOI: 10.1117/1.JRS.6.063554]
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1 Introduction

Leaf area index (LAI) is a key biophysical parameter in most land-surface models, governing
partitioning of energy, carbon, and water fluxes between the soil and canopy components of the
land-surface system.1 Model fluxes and surface behavior can be highly sensitive to LAI inputs,
necessitating development of accurate methods for high-quality LAI retrieval, generally using
remote sensing data.2–5 For global to continental scale applications, coarse-resolution (here
defined as kilometer-scale) data, such as from the moderate resolution imaging spectroradi-
ometer (MODIS), provide sufficient spatial detail on a regular basis.6 MODIS is a key instrument
aboard NASA’s Terra (morning) and Aqua (afternoon) satellites and acquires data globally twice
per day. The MODIS LAI product has been validated and analyzed with independent field
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measurements.7–13 For applications at regional to local scales, however, often finer-resolution
LAI data are required, such as maps resolving individual agricultural fields.

For example, Anderson et al.14,15 describe a multi-scale surface energy balance system that
maps evapotranspiration (ET) and other surface fluxes from field to global scales, using land
surface temperature and vegetation cover information from a suite of satellite sensors. At the
continental to global scales, the atmosphere-land exchange inverse (ALEXI) model uses time-
differential measurements of surface temperature from geostationary satellites along with
MODIS LAI to generate flux maps at resolutions of 3 to 10 km.14,16 For more detailed spatial
analyses, such as mapping variability in water use across a watershed or between individual farm
fields, an ALEXI disaggregation approach (DisALEXI) can be applied using temperature and
cover information from polar orbiting sensors (i.e., Landsat or MODIS) to map fluxes at 30
to 1000 m resolution.4,17 Experiments in fusing Landsat- and MODIS-derived flux fields
may lead to methods for generating reliable ET information at both high spatial and temporal
resolutions.15,18

For these applications, it is beneficial that the Landsat-derived LAI be consistent with the
MODIS LAI fields at the 1-km scale; that is, that the aggregated LAI from the fine-resolution
sensor should agree with the coarse-resolution LAI. This maximizes self-consistency in retrieved
fluxes between the different spatial resolutions. However, standard LAI retrieval approaches
(either empirical or physical) for Landsat data will likely produce LAI fields that are inconsistent
with the MODIS LAI product. Even using the same MODIS LAI retrieval algorithm, LAI could
be different for Landsat and MODIS due to the differences in spectral response functions, land-
cover classifications, and required tuning of parameters in preprocessing procedures.5 These
inconsistencies in LAI inputs will cause discrepancies in the flux fields produced at different
spatial resolutions, particularly when there exists significant sub-pixel variation in cover fraction
and moisture,19 and will degrade the potential for multi-sensor data fusion techniques.

This paper describes a simple reference-based approach to retrieving LAI from Landsat
reflectance data using the MODIS LAI product as a reference. Our objective is to create a
MODIS-consistent LAI product from Landsat data for use in multi-scale modeling systems
such as ALEXI/DisALEXI. We start by describing the algorithm and experiment site, and
then present results, followed by conclusions and a brief discussion of plans for future method
development.

2 Methodology

The reference-based methodology described here is an empirical approach that uses high-quality
retrievals from the MODIS LAI product as a reference for retrieving LAI from Landsat reflec-
tance maps. Figure 1 is an illustration of the processing framework for the reference-based
approach. Similar to the approach proposed to build consistent surface reflectance from multiple
medium-resolution sensors,20 this methodology uses the coarse-resolution MODIS LAI product
as a reference to produce consistent Landsat-resolution LAI. In this processing framework,

Fig. 1 The processing diagram of the reference-based approach, which uses high-quality MODIS
LAI retrievals as references to retrieve a consistent LAI product from Landsat data.
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Landsat data in digital number form are first calibrated and atmospherically corrected to surface
reflectances using the Landsat ecosystem disturbance adaptive processing system (LEDAPS).21

Landsat surface reflectances are aggregated to match coarse-resolution MODIS data. Coarse-
resolution LAI pixels are extracted from the MODIS LAI product over the Landsat scene.
High-quality MODIS LAI samples retrieved from the main algorithm are selected based on
the product quality flags. The selected MODIS LAI samples are further screened to exclude
pixels with high sub-pixel variability in Landsat reflectance, thus ensuring that only homoge-
neous MODIS pixels are used in the training process. As LAI has a nonlinear relation to spectral
reflectance and VI, a multi-variant regression tree approach [cubist by RuleQuest (The mention
of trade names of commercial products in this article is solely for the purpose of providing spe-
cific information and does not imply recommendation or endorsement by the U.S. Department of
Agriculture.)] is used in the processing. LAI and surface reflectance samples at MODIS pixel
resolution are used to train the Landsat resolution model. The derived regression trees are finally
applied to the Landsat surface reflectances (Landsat resolution) to produce Landsat-scale
LAI maps.

Empirical LAI retrieval approaches relate LAI to arithmetic combinations (indices) of spec-
tral bands. These indices may be computed from visible, near, or middle infrared bands.22–24

Instead of using the derived indices, in this experiment the surface reflectances of Landsat 5
Thematic Mapper (TM) or Landsat 7 Enhanced Thematic Mapper Plus (ETMþ) bands 2 to
5 and 7 were used directly to build the regression trees. Landsat band 1 was excluded in building
the regression tree due to its low signal-to-noise ratio after atmospheric correction.21 However,
all Landsat bands (1 to 5 and 7) were used in determining homogeneous MODIS samples.

Similar to the empirical approaches, the accuracy of the regression tree approach relies on
the quality and distribution of samples. To include a wider range of sampled LAI, data from
multiple MODIS and Landsat image pairs spanning a period of rapid vegetation growth
were combined to build a regression tree and the same tree was then applied to all Landsat scenes
used in this paper.

In this processing framework, several factors that impact LAI retrievals need to be
considered.

2.1 MODIS High-Quality LAI Retrievals

The MODIS LAI product provides quality control flags for each pixel. In the MODIS LAI
algorithm, LAI can be retrieved either from the physically based radiative transfer model
(main algorithm) or the empirical-based (vegetation index) approach (backup algorithm).3 A
summary of quality analysis and validation activities associated with the MODIS LAI product
indicates that MODIS LAI retrieved from the radiative transfer model with the best quality
flags can reach an accuracy of 0.3 LAI for cropland8,10 and 0.5 LAI for needleleaf forest.7,12

The overestimation of LAI identified in early MODIS LAI collections has been addressed in
Collection 4 processing and was further refined in Collection 5 processing.9,11 Generally, the
quality-control flags embedded in the MODIS LAI product reflect the retrieval quality reason-
ably well.7–12 The MODIS LAI from the main algorithm shows realistic spatial variation at the
continental scale.13 To ensure that only the best quality of data are being used in the regression
tree training, LAI retrievals were only selected that were generated with the best quality radiative
transfer model (main algorithm as flagged in MODIS LAI product in SCF_QC bit). As LAI
retrievals normally are less reliable when the spectral signals tend to saturate at moderately
high values of LAI, retrievals with a saturation quality flag (SCFQC ¼ 1) were excluded
from sampling.

2.2 Pure Homogeneous MODIS Pixels

LAI has a nonlinear relation to spectral reflectance and derived vegetation indices (VI).3,4

Suppose this relationship can be expressed as

LAI ¼ fðSÞ; (1)
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where LAI represents leaf area index, S represents surface reflectance for a suite of spectral
bands, and f is a nonlinear function that relates LAI and surface reflectance S. The function
f could represent a simple empirical model or a complex physical model.

In general there are two ways to compute LAI at MODIS resolution using Landsat data. One
is to compute LAI from Landsat data and then linearly aggregate these fine-scale LAI values to
MODIS resolution as:

LAIM ¼
P

n
i¼1 LAILðiÞ

n
¼

P
n
i¼1 fL½SLðiÞ�

n
; (2)

where subscripts M and L represent MODIS and Landsat, respectively, i is the index associated
with each Landsat pixel within a given MODIS pixel cell, and n is the total number of Landsat
pixels in this MODIS pixel cell.

Another way to retrieve LAI at MODIS resolution is to first aggregate the Landsat surface
reflectances to MODIS resolution and then compute LAI at that scale:

LAIM ¼ fMðSMÞ ¼
fM½

P
n
i¼1 SLðiÞ�
n

: (3)

The MODIS LAI values from these two approaches should be equal, which leads to

fM

�Xn
i¼1

SLðiÞ
�
¼

Xn
i¼1

fL½SLðiÞ�: (4)

As f is a nonlinear function, the function composition is not commutative here and thus we can
conclude fM ≠ fL. This inequivalence of LAI functions at different spatial resolutions has been
noted in early studies.4,25,26 However, there are two situations that can make them equivalent.
One is the situation in which the nonlinear function f can be segmented as multiple linear func-
tions and all Landsat surface reflectance SLðiÞ happen to fall along a similar linear segment.
Within the small segment, the function f can be treated as the same for both Landsat and
MODIS. This requires that all the Landsat surface reflectance SLðiÞ in a MODIS cell are
very similar. The other situation is that in which the Landsat surface reflectances SLðiÞ in
the MODIS pixel cell are identical (homogeneous) so that the nonlinear function derived at
MODIS resolution can be used at the Landsat resolution directly. In either situation, we require
that MODIS LAI samples have low sub-pixel variation in surface reflectances from Landsat (or
pure MODIS pixels, as determined at the Landsat scale). The sub-pixel variance can be com-
puted from Landsat surface reflectances inside each MODIS pixel cell. In this study, the coeffi-
cients of variation (CV, ratio of the standard deviation to the mean value) for the MODIS pixels
were computed and averaged among all spectral bands. The CV describes the relative variation
of a MODIS pixel in a Landsat resolution. The smaller the CV is, the purer the MODIS pixel will
be. If the band-averaged CV of a MODIS pixel is less than a threshold, the MODIS pixel is
considered a homogeneous sample. The thresholds of the CV (indicted below) of surface reflec-
tances should be adjusted to maintain the purity of the MODIS pixels while ensuring there are
enough MODIS samples to effectively train the regression tree.

2.3 Regression Tree for LAI

Many empirical approaches retrieve LAI using spectral VI.2,3,22–24 Although the approaches are
simple to implement, neglecting vegetation structure and other effects related to cover type is
likely to cause a large uncertainty in LAI mapping when extending the algorithm beyond the
calibration site. This uncertainty can be reduced by considering cover types in the LAI–VI rela-
tions.3,27 As the cover type information comes from the classification map that is produced from
the spectral reflectance signals, it is reasonable to use reflectance from multiple bands in the LAI
retrieval. In this study, we rely on a multi-variant regression tree approach (cubist from Rule-
Quest) to distinguish cover types and build LAI-reflectance relations based on the intrinsic data
features. The cubist regression tree method is a data mining approach that builds rule-based
predictive multivariate linear regression models based on available samples.28 The model
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tree is constructed using divide-and-conquer method recursively based on entropy measures. The
cubist (or M5 in early open version) algorithm combines regression trees and classification to
make model trees.28 The regression tree approach has been widely used in different research
fields as well as in remote sensing, such as in the construction of the national land cover database
(NCLD)29 and the MODIS continuous field product.30

The LAI samples can be weighted according to their importance or uncertainty. In this study,
the weight of each sample was defined as the inverse of the CVof surface reflectances within the
MODIS pixel. To balance the samples from different dates, the weights of samples were normal-
ized using Eq. (5) such that the total weights (or contributions) from each date are equal.

wij
0 ¼ wijP

wij
· Tw; (5)

where wij is the adjusted weight for sample i at date j, wij is the original weight, and Tw is the
defined total weight (100 in this paper) for each date. The original weight wij is computed by

wij ¼
1

CVij
¼ μij

σij
(6)

where μij and σij are the mean and standard deviation of Landsat surface reflectances within a
MODIS pixel.

The number of rules used in cubist training was tested for the study area. It was found that the
average prediction error (mean absolute difference) and correlation coefficient from training
samples became stable when the number of rules reached 5. In the process of constructing
the regression tree (classification), Landsat band 3 (red) and band 4 [near infrared (NIR)]
were the only two bands used, which indicates the importance of red and NIR bands in
LAI retrievals. In the process of building multivariate linear regression, contributions from
each band differed. Landsat band 3 and band 4 were used in all linear regressions (100%),
while bands 7, 5, and 2 were only used in 72%, 67%, and 56% of the regressions, respectively.
The following two example rules (tree leaves) from the established cubist regression tree in this
paper show conditions and linear regressions for two conditions. Rule 1 contains 8882 samples
with an average LAI of 0.41. This rule applies to samples of sparse vegetation or bare soil, which
is defined by band 4 (NIR) reflectance <0.2621. The LAI is computed from linear regression
based on bands 2, 3, and 4 reflectance values. Rule 5 contains 1624 samples with mean
LAI of 3.55. This rule applies to dense vegetation and is defined by both band 3
(<0.04553) and band 4 (>0.43903). LAI is computed from bands 2, 3, 4, and 7.

Rule 1: [8882 cases, mean 0.41, range 0.1 to 1.7, est err 0.06]
if

B4 ≤ 0.26212
then

LAI ¼ 0.02þ 6.2B4 − 4.9B3 − 4.2B2

Rule 5: [1624 cases, mean 3.55, range 0.8 to 4.7, est err 0.27]
if

B3 ≤ 0.04553
B4 ≤ 0.43903

then
LAI ¼ 1.14 − 39.8B3þ 12.2B4 − 34.6B2 − 5.9B7

3 Study Site and Data Processing

This simple reference-based LAI retrieval methodology was tested using satellite and ground
data collected during the soil moisture experiment of 2002 (SMEX02) field campaign, focused
on the period from June 15 to July 8. Within the Walnut Creek Watershed in central Iowa, 21
corn and 10 soybean fields were selected as sites for intensive soil moisture and vegetation sam-
pling.4 LAI was measured in four sampling rounds (June 15–19, June 27–30, July 2–3, and July
5–8) using LAI-2000 (LI-COR) Plant Canopy Analyzers at 12 field sites. The remaining 19 sites
were sampled twice, in rounds 2 and 4. The full sampling interval covered the period from emer-
gence to tasseling/full bloom in many corn/soybean fields. Average field size was approximately
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500 × 500 m. For each of the 21 fields, vegetation sampling was conducted with multiple repeti-
tions within three to four sampling sites with a characteristic observation scale of 10 × 10 m.
Anderson et al.4 compared the field LAI observations with LAI retrievals based on VI maps
acquired with Landsat and an airborne imaging system, suggesting a typical retrieval error
of about 0.6 LAI.4

The SMEX02 field sites were located within two overlapping Landsat worldwide reference
system (WRS)-2 scenes (paths 26–27 and row 31), thus increasing the available Landsat scenes
for use in this study. Nine clear Landsat-5 and Landsat-7 scenes are available from May 14 to
September 2, 2002. Table 1 lists the selected Landsat dates along with coincidental periods for
the MODIS Terra eight-day composite LAI product (MOD15A2). Note that the combined Terra
and Aqua four-day composite LAI product (MCD15A3) is only available after day of year
(DOY) 185 (July 5–8) and thus was not used in sampling and training. The four-day composite
LAI was only used and evaluated to compare with the standard eight-day product.

Landsat data were calibrated and atmospherically corrected to surface reflectances using the
LEDAPS approach. All images listed in Table 1 are clear over the SMEX02 measurement sites
(a small subset of a Landsat scene). The Landsat ETMþ image on July 17 shows about 20%
cloud contamination for the top and bottom portions of the scene, but not over the measurement
sites. LandsatETMþ on July 8 is an adjacent path (path 27 and row31) to the primary scene (path 26
and row31), andhas about 10%cloud contamination in the topportion of the scene,which is not over
the SMEX02 study area. The Landsat TM scene onAugust 26 has about 40% cloud contamination,
but again not over the SMEX02 domain. Since automatic detection of clouds and cloud shadows for
Landsat imagery is still challenging, the cloudy Landsat scenes were excluded from the sampling
and training process to maintain high image quality. However, LAI retrievals were applied to all of
these scenes using the combined regression tree built from the other six image pairs.

The in situ LAI measurements from the four sampling rounds were linearly interpolated or
extrapolated to three Landsat dates on June 23, July 1, and July 8 using the closest sampling
events. The temporally interpolated data were used for direct comparison between Landsat retrie-
vals (30 m) and site measurements at the observational scale (10 m). Estimates of average field-
scale LAI were aggregated from empirical VI-based LAI retrievals using aircraft imagery and
Landsat data in previous work.4 The field scale ground observations on the four nominal mea-
surement dates (June 16, June 23, July 1, and July 8) were also compared to the LAI retrievals
from the regression tree approach discussed in this paper.

4 Results and Analysis

To create the regression tree, homogeneous MODIS LAI samples with the highest quality flag
(SCFQC ¼ 0; main algorithm, no saturation) were extracted from the MODIS LAI maps for the

Table 1 Available Landsat scenes and MODIS LAI products over the SMEX02 study area in 2002
(TM: Landsat-5 Thematic Mapper; ETMþ: Landsat-7 Enhanced Thematic Mapper Plus).

Data pair Landsat Sensors WRS-2 Landsat quality MODIS LAI

1 134 (5∕14) ETMþ p26r31 clear 129–136 (5∕9–5∕16)

2 158 (6∕7) TM p26r31 clear 153–160 (6∕2–6∕9)

3 174 (6∕23) TM p26r31 clear 169–176 (6∕18–6∕25)

4 182 (7∕1) ETMþ p26r31 clear 177–184 (6∕26–7∕3)

5 189 (7∕8) ETMþ p27r31 10% cloud 185–192 (7∕4–7∕11)

6 198 (7∕17) ETMþ p26r31 20% cloud 193–200 (7∕12–7∕19)

7 214 (8∕2) ETMþ p26r31 clear 209–216 (7∕28–8∕4)

8 238 (8∕26) TM p26r31 40% cloud 233–240(8∕21–8∕28)

9 245 (9∕2) TM p27r31 clear 241–248 (8∕29–9∕5)
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six clear Landsat acquisition dates as listed in Table 1. The thresholds of CV for pure samples
were defined as 15% for May 15, June 7, and September 2, and 20% for the rest of inputs to
ensure enough samples from each were included. This resulted in 31,929 pure high-quality
MODIS LAI samples distributed across the whole Landsat scene area. Of the total set of samples,
50% were randomly selected and used to train the combined regression tree. The average error
for the training samples and the remaining 50% of the evaluation samples were 0.15 and 0.16,
respectively. The correlation coefficient was 0.96 for both cases. The combined regression tree
was applied to all Landsat data, including cloudy scenes. The results were compared to the
MODIS LAI products and validated with the field measurements. Temporal trends of LAI
from Landsat retrievals were analyzed and compared to the ground observations.

4.1 Comparison to MODIS LAI

Landsat LAI maps retrieved from the reference-based approach along with the MODIS LAI from
high-quality retrievals (main algorithm, no saturation) for the same period are illustrated in
Fig. 2. Black pixels in the MODIS LAI maps represent missing or low-quality retrievals.
Although a small percentage of high-quality MODIS retrievals were chosen as training samples
(limited by within pixel variation), the MODIS and Landsat LAI are consistent both temporally
and spatially, but with greater spatial detail in the Landsat retrievals. While the images from July
8, July 17, and August 26 were not used in sampling and regression tree training, the Landsat
LAI retrievals still look similar to MODIS LAI for the cloud-free area. This capability is impor-
tant for the reference-based approach when there is none or a very limited number of high-quality
samples available for a certain date.

In order to compare to MODIS LAI at the pixel level, Landsat LAI was first aggregated
to MODIS resolution. Comparisons of Landsat LAI to MODIS were divided into three categories:
1. high-quality MODIS retrievals used in the training process; 2. high-quality MODIS retrievals
that have not been used in training due to the high heterogeneity of Landsat surface reflectances
within theMODIS pixel; and 3. low-qualityMODIS retrievals including retrievals from the backup
algorithm (empirical approach) and retrievals under saturation conditions. Note that while the
regression tree training process builds a function from the aggregated reflectance [as shown in
Eq. (3)], the comparison in Table 2 is based on the aggregated LAI [as shown in Eq. (2)]. Although
only homogeneous pixels were considered in the training, there are always small sub-pixel varia-
tions of Landsat surface reflectances within MODIS pixels. Therefore, the comparison for training
samples (first category) is not exactly the same as a traditional examination of training samples. In
this study, only small percentages of homogenous MODIS pixels (5% to 25%) were selected as
training samples. The mean bias errors (MBE) between Landsat retrievals and MODIS LAI (Land-
sat minus MODIS) are between−0.12 and 0.0, suggesting no obvious bias in the combined regres-
sion tree. The mean absolute difference (MAD) range from 0.07 to 0.80, which may be partially
due to the geolocation errors and mismatch between MODIS and Landsat pixel coverage.

In Table 2, the majority of MODIS retrievals were high-quality retrievals but were not
selected as training samples due to high sub-pixel variation in the Landsat surface reflectances.
Because they were not used to build the tree, these high-quality retrievals serve as independent
references that can be used to validate the combined regression tree. The MBE for these samples
ranged from −0.09 to 0.25 for all dates. For the dates that were used for the training, the MBE
ranges from −0.09 to 0.12, which is similar to the training samples. Three cloudy scenes that
were excluded from training show higher MBE in the range of 0.10 to 0.25. The MAD varies
from 0.23 to 0.83, slightly higher than the training samples but still close to the range of MODIS
LAI retrieval accuracy (i.e., 0.3 to 0.5). The higher MAD on August 2 is partially due to the high
LAI values on that day, as shown in Fig. 2.

The MODIS LAI product also includes retrievals from an empirical approach, which is
implemented when the main algorithm fails due to various reasons.3 These low-quality retrievals
from the backup algorithm and the saturated retrievals from the main algorithm comprise the
third comparison group. Both MBE andMAD in this group are much larger than the high-quality
groups (see Table 2). As data quality in this group is hard to quantify, especially for the saturated
retrievals with a LAI higher than 6, they are included in this table only for qualitative comparison
purposes.
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The scatter plots between MODIS LAI and Landsat retrievals for three categories are shown
in Fig. 3. The darker color represents higher occurrence of LAI values from MODIS and
Landsat. Landsat retrievals have been aggregated to MODIS spatial resolution for comparison.
Retrievals from all nine Landsat dates were included. Consistent with the statistics in Table 2, the
MODIS high-quality LAI products show better agreement with Landsat retrievals and are close
to the 1-to-1 line. The MODIS low-quality retrievals show higher variations in scatter plot
[Fig. 3(c)].

4.2 Comparison to Field Measurements

Estimates of LAI retrieved from this approach were evaluated using SMEX02 ground observa-
tions at both the observation scale (10 m) and field scale (>500 m). In Fig. 4, scatter plots are
shown between Landsat retrievals and site measurements at the observation scale, which have

MODIS Landsat MODIS Landsat

May 9-16 May 14 July 12-19 July 17*

June 2-9 June 7 July 28-August 4 August 2

June 18-25 June 23 August 21-28 August 26*

June 26-July 3 July 1 August 29-Septmeber 5 September 2

July 4-11 July 8* 0 1 2 3          4          5

Fig. 2 MODIS LAI product (MOD15A2, high-quality only) and the retrieved LAI from Landsat using
MODIS homogeneous LAI samples. Black in the MODIS images represents no data or low-quality
retrievals. Black in the Landsat images (*) represents cloudy pixels as detected in the LEDAPS.
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Table 2 Mean bias error (MBE; Landsat-MODIS) and MAD between Landsat retrievals and
MODIS LAI products, grouped by MODIS retrieval quality. (Portion indicates percentage of pixels
in the corresponding category in Landsat image; dashed lines represent cloudy scenes that were
not used in training).

Groups
High-quality MODIS LAI

(Training samples)
High-quality MODIS LAI
(Not training samples)

Saturated or low-quality
MODIS LAI retrievals

Dates Portion(%) MBE MAD Portion(%) MBE MAD Portion(%) MBE MAD

14 May 9.6 0.00 0.07 90.3 0.12 0.23 0.2 −1.91 2.04

7 Jun 16.9 −0.04 0.13 81.7 0.06 0.39 1.4 −0.53 1.21

23 Jun 24.9 −0.06 0.32 74.3 0.07 0.41 0.9 0.27 0.83

1 Jul 5.0 −0.12 0.50 91.8 0.07 0.52 3.2 0.22 0.83

8 Jul — — — 92.7 0.20 0.46 7.3 −1.30 1.65

17 Jul — — — 92.5 0.10 0.74 7.5 0.25 1.01

2 Aug 10.0 −0.04 0.80 78.2 −0.09 0.83 11.8 0.07 1.00

26 Aug — — — 88.5 0.25 0.78 11.5 0.42 1.01

2 Sep 22.2 0.00 0.39 76.5 −0.04 0.39 1.4 −0.31 0.68

(a) (b) (c)

Fig. 3 Scatter plots between MODIS LAI and Landsat retrievals (aggregated to MODIS resolution)
for three categories: (a) high-quality MODIS retrievals used in the training process; (b) high-quality
MODIS retrievals that have not been used in training; and (c) low-quality MODIS retrievals.

Fig. 4 Scatter plot between Landsat retrievals (30 m) and field observations at the observation
scale (10 m) showing good agreement with low to moderate LAI (0–3) but underestimation for high
LAI (3–5) for the Landsat retrievals.
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been interpolated to the Landsat dates. A better agreement can be seen in the low to moderate
range in LAI (0–3). However, under high LAI (3–5), Landsat retrievals underestimate LAI espe-
cially for July 1, even though Landsat retrievals and MODIS LAI products agree well in Table 2.
The coefficient of determination (r2) between Landsat retrievals and site measurements is 0.73.
An overall MBE (Landsat-field observations) and an MAD are −0.18 and 0.58, respectively. The
direct comparison between site measurements (10 m) and Landsat retrievals (30 m) requires that
fields are relatively homogeneous at the Landsat scale, which may not be appropriate for some
heterogeneous fields.

To reduce uncertainties due to geolocation errors and field heterogeneity that may prevail
at the observation scale, Landsat retrievals were averaged and compared at the field scale
(>500 m). In Fig. 5, the scatter is shown between the aggregated Landsat retrievals and
field-scale LAI estimates from Anderson et al.4 for June 23, July 1, and July 8. The agreement
is improved at the field scale, with a coefficient of determination (r2) between Landsat retrievals
and field measurements at field scale of 0.94 and an overall MBE (Landsat-field observations) of
−0.07 and an MAD of 0.23. Similar to Fig. 4, Landsat retrievals underestimate LAI for the high
LAI range (3 to 5), especially for July 1. For LAI ranging from 0 to 3, the MBE ¼ 0.09 and the
MAD ¼ 0.17. For LAI ranging from 3 to 5, the MBE ¼ −0.28 and the MAD ¼ 0.32.

There may be several reasons for the larger discrepancy when LAI > 3. First, the MODIS
eight-day composite LAI product from June 26 to July 3 was used as the reference for Landsat on
July 1. Consequently, the MODIS LAI product may be representative of conditions several days
prior to the actual Landsat overpass date. For the rapid growth period, this temporal discrepancy
can lead to significant differences in LAI. Based on values derived by Anderson et al.4 the time
rate of change in LAI for corn ranged from 0.15 to 0.25 LAI per day for the period of June 23 to
July 1. Second, high-quality retrievals and pure MODIS pixels were chosen as the training sam-
ples. As the typical crop field size may be smaller than a single MODIS pixel, there may be an
unequal distribution of samples, especially for the high LAI values. In addition, high LAI values
were more likely to be flagged as the saturated retrievals in the MODIS LAI quality layer and
thus be excluded from references. In this paper, there are only about 8.4% of samples having
LAI values greater than 3.0. Therefore, a lack of high LAI references may have caused the
underestimation by the LAI retrieval technique.

4.3 Temporal Trends

Using the combined regression tree, LAI was computed for all nine Landsat scenes listed in
Table 1. This provided a dense time-series of LAI at high spatial resolution from mid-May
to early September. This period covers the green up, maturity, and partial senescence stages
for corn and soybeans in central Iowa. The time-series of LAI from Landsat retrievals and
at field scale measurements for all 12 full sampling sites are illustrated in Fig. 6. All sites

Fig. 5 Scatter plot of LAI between field observations and Landsat retrievals (field observations
were extracted from previous publication by Anderson et al.4).

Gao et al.: Simple method for retrieving leaf area index from Landsat using MODIS : : :

Journal of Applied Remote Sensing 063554-10 Vol. 6, 2012

Downloaded from SPIE Digital Library on 18 Jul 2012 to 128.183.109.73. Terms of Use:  http://spiedl.org/terms



were sampled in four sampling rounds (crosses in Fig. 6). The LAI retrievals from the Landsat
time series show consistent temporal patterns in comparison with field measurements in both
corn and soybean field sites and mostly within the error bars (one standard deviation) of field
measurements, capturing both green-up time and development trends. The corn sites grew faster
and reached the highest LAI on July 8 (DOY 189) image. The soybean sites showed lower
LAI during the four SMEX02 measurement rounds but continue increasing up to August 2
(DOY 214). The LAI retrievals for soybean fields show very good agreement over all periods
except a few possible overestimates on sites WC10, WC14, and WC23 on July 8. The corn fields
show good agreement for the first two rounds (middle and end of June). For the last two rounds,
there is some underestimation for corn fields on July 1 and July 8, which can be also observed
in Figs. 4 and 5. The depressed growth pattern for site WC25 (corn) due to moisture stress
(Anderson et al.4) was captured in the Landsat retrievals.

As the Terra and Aqua combined four-day composite MODIS LAI products are only avail-
able after day 185 (July 4–7, 2002), the four-day composite products were not used as references
in this study, but may result in better agreement with daily field measurements especially during
periods of rapid vegetation growth. As an example, Fig. 7 compares results on July 8 for the
SMEX02 sites using the MOD15A2 (Terra eight-day composite) and MCD15A3 (Terraþ Aqua

four-day composite) LAI products as references. Cloudy pixels in the Landsat scene were
excluded in the training. Results show higher LAI values are obtained if the four-day composite
MODIS LAI is used as the reference compared to the eight-day composite.

Fig. 6 Time-series LAI from Landsat retrievals (circles) show consistent temporal patterns in com-
parison with field measurements (crosses) in soybeans (top two rows) and corn (bottom two rows)
fields. Error bars show standard deviation of LAI from field measurements.
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5 Discussion and Conclusions

This paper demonstrates a simple framework for retrieving MODIS-consistent LAI from Landsat
reflectance data. The consistent Landsat and MODIS LAI products can be used in the combined
ALEXI/DisALEXI approach to produce consistent land-surface flux maps over a range in spa-
tial scales—from continental coverage at 10-km resolution, to local area coverage at 30-m
resolution.31

The results show that the retrievals from Landsat are consistent with the high-quality MODIS
LAI product with no obvious bias. The retrievals were also compared to the SMEX02 field
measurements, showing similar temporal patterns. Good agreement between Landsat retrievals
and field measurements was observed for LAI in the range of 0 to 3, while higher LAI (3–5) were
underestimated especially for corn sites on July 1 and 8.

An empirical regression tree approach was tested and applied in the LAI retrievals. Our
experiments show that this approach is flexible and can describe the relationship between surface
reflectances and LAI based on intrinsic sample properties. Since this approach does not require
an a priori relationship between LAI and reflectance, it is important that the quality of the reflec-
tance data is high and that a full range in the reflectance distribution is sampled. If high-quality
data are limited, the regression tree approach may not be stable for the LAI retrievals that require
significant extrapolation. In such cases, traditional LAI–VI approaches may be considered in the
framework. The tests in the current study found no obvious improvement by including additional
band combinations (e.g., VIs) in sample training, suggesting that the regression tree approach
has the capability of describing complex nonlinear relationships through a series of rules gen-
erated from having an extensive set of samples. Increasing the number of rules can improve
prediction accuracy but includes the risk of introducing unreliable rules from limited samples.
In this paper, we constrained the number of rules to five based on the following observations:
1. the cubist predicted error (or MAD) and correlation coefficient became stable when the num-
ber of rules reached 5, and 2. vegetation cover types in our study sites were relatively simple
(primarily soybean and corn). We suggest limiting the number of rules to an approximate
number of surface types in the study area to avoid over-parameterizing the regression tree
procedure.

In this paper, pure pixels were determined by the sub-pixel variations (coefficient of varia-
tion) of Landsat surface reflectances within MODIS pixels. This process can be replaced using
other homogeneous indexing procedures or high-quality land cover maps if such maps cover the
same timeframe as the Landsat observation period. In this paper, a benefit of using the sub-pixel
variations is that this approach relies on the reflectance features only rather than predetermined
cover types and thus can be performed automatically. A more robust approach to determine
homogeneous pixels may improve results and will be explored in future studies.

As the MODIS LAI product used in this paper is an eight-day composite product, the LAI
retrievals may not represent the actual Landsat overpass date even though the MODIS production
period covers the Landsat acquisition date. The retrieved LAI from Landsat is more like an eight-
day composite product rather than a single-day product. This is also revealed in the comparison
between Landsat retrievals and MODIS LAI, showing no obvious bias between the two. The
example of using a four-day composite (Fig. 7), if available, suggests that a better temporal
product can be generated, particularly during the period of rapid crop growth. Also note that

Fig. 7 Landsat LAI for July 8, 2002 for the SMEX02 experiment sites as retrieved using (a) Terra
eight-day composite MODIS LAI product (185–192, July 4–11) and (b) Terraþ Aqua four-day
composite LAI (189–192, July 8–11) as reference.
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as the MODIS LAI product is used as the reference in this study, this approach is limited to the
Landsat scenes acquired in the MODIS-era. A consistent LAI product from AVHRR was pro-
posed recently5 and may extend the applicability of this approach.

The reference-based approach is a simple empirical technique for retrieving Landsat LAI
using MODIS LAI products as a reference. The MODIS LAI samples were retrieved from a
radiative transfer model. Therefore, accuracy of this approach depends on MODIS data quality.
LAI retrieving accuracy may be lower for small vegetation patches that are not presented at the
MODIS pixel resolution. Comparison between direct retrieval using a radiative transfer model
and this approach for the same Landsat data was not performed. The application of this approach
to more complex landscapes needs to be examined. The combination of LAI-reflectance samples
from different dates may introduce additional variations such as vegetation phenology changes
and bidirectional reflectance effects caused by different solar geometries. A simple regression
tree built from reflectance data may not be able to capture these variations or a more complex
pattern of land cover types. Including additional information such as solar geometries, topology,
or land cover types in this approach may be necessary for complex landscapes.

By limiting MODIS LAI samples to being both pure and of high quality, LAI information
may be lost for certain surface types that appear only at smaller spatial scales (sub-MODIS
resolution) and always mixed with other surface types. This may affect the results when
MODIS LAI is used as the sole reference in retrieving Landsat LAI, especially when low or
high LAI values are missing from the MODIS samples and the regression models need to extra-
polate LAI outside the training data range. In this study, high LAI values that were not repre-
sented in the range of MODIS samples were encountered in agricultural fields for some Landsat
acquisition dates. LAI measurements acquired on the ground within these fields may help to
fill this gap, providing LAI information over a full data range of LAI expected at the Landsat
scale. The framework in this paper can be modified to combine LAI samples from different
data sources. In the cases when MODIS samples cannot represent features from fine-resolution
Landsat data, additional information from field measurements may be added. The combination of
the two reference sets (MODIS and field measurements) may improve performance in the retrie-
val over the full range of expected LAI. This option will be explored in future investigations.
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